УДК 565.393:551.735.15(470.31)

ТРИЛОБИТЫ ИЗ ПОДОЛЬСКОГО ГОРИЗОНТА МОСКОВСКОГО ЯРУСА КАРЬЕРА ПРИОКСКИЙ (МОСКОВСКАЯ ОБЛАСТЬ)

Э.В. Мычко1, А.С. Алексеев1,2

1 Московский государственный университет имени М.В. Ломоносова
2 Палеонтологический институт им. А.А. Бориська РАН, Москва

Поступила в редакцию 09.09.11

Описаны впервые найденные в московском ярусе Подмосковья целые панцири трилобитов, определенные как Diatomopyge cf. camposensis, и пигидий Pseudophyllipsia sp. Они происходят из подольского горизонта (улитинская свита) карьера Приокский (Московская область).

Ключевые слова: трилобиты, средний карбон, московский ярус, подольский горизонт, Подмосковье.

История

Первые каменноугольные трилобиты, установленные в России, были найдены Г.И. Фишером фон Вальдгеймом в Подмосковье, описаны и изображены в изданной на латинском языке работе Э.И. Эйхвальда (Eichwald, 1825) под названиями Asaphus Brogniarti Fischer и Asaphus Eichwaldi Fischer. Позднее Г.И. Фишер фон Вальдгейм (Fischer de Waldheim, 1837, с. 121) посчитал, что различия между этими двумя формами несущественны, и объединил их под названием Asaphus Eichwaldi. В его распоряжении были по крайней мере три пигидия: один найден в окрестностях Верей в Ратовском овраге, где обнаруживается толща известняков и доломитов нижней части каширского горизонта московского яруса среднего карбона; второй — в Мячково (мячковский горизонт московского яруса); третий — у Боровска. В районе Боровска по берегам р. Протвы вскрыты верхние слои нижнего карбона — известняки противного горизонта серпуховского яруса и терригенная толща верхней части каширского горизонта московского яруса, перекрытая доломитизированными известняками ордовикской свиты того же горизонта, сменяющимися сходными породами низов каширского горизонта. В связи с этим установить возраст слоев, откуда происходит третий экземпляр, не представляется возможным. К сожалению, первая палеонтологическая коллекция, собранная Г.И. Фишером фон Вальдгеймом, была утрачена во время московского пожара 1812 г. Здесь нужно отметить, что возраст слоев в Ратовском овраге у р. Верей зарубежными исследователями почему-то до настоящего времени считается нижнекаменноугольным, точнее визейским (Hahn, 1991, c. 203).

В известном труде Р.И. Мурчисона и др. (Murchison et al., 1845) по пигидиям описана Phillipsia Eichwaldi Fischer (de Verneuil, 1845, c. 375—376). Изображенный экземпляр происходит из района "Передки, на Быстрце (Валдай)". Ныне имеется с. Передки, расположенное примерно в 10 км к востоку от г. Боровичи Новгородской области. В этом районе развиты нижнекаменноугольные отложения. Однако среди других местонахождений указана "Кашира на Оке", и это — область развития верхней части каширского и нижней части подольского горизонта московского яруса (Мячина и др., 2001а).

Э.И. Эйхвальд (Eichwald, 1861, с. 1435—1437) отметил, что установленные Фишером фон Вальдгеймом виды к роду Griffithides Portlock и считал их самостоятельными. Для G. Eichwaldi он указал следующие местонахождения: у д. Верей на Ратовке, д. Передки на р. Быстрце в окрестностях Боровичей в Новгородской губернии, на р. Воль, приток р. Вычегды, и в Лисичанской балке (Донбасс). Другой вид G. brogniartii встречен в боком известняке со Spirifer mosquensis в Мячково и на берегах р. Серены в Козельском уезде Калужской губернии. Второй район известен выходами известняков черепетского горизонта турнейского яруса (Мячина и др., 1993), хотя там развиты и породы верхнего визея.

Подробное изучение ранних этапов истории каменноугольных трилобитов вообще и подмосковных в частности дал В.И. Мёллер (1868) при описании двух новых видов из нижней перми Среднего Урала.

Г.А. Траутшольд (Trautschold, 1874) в монографии по фауне "верхнего каменноугольного известняка" из каменоломни Мячково описал три вида: Phillipsia globiceps Phillips, P. grünwaldti Möller и P. pustulata Schlotheim. По его указанию (Trautschold, 1879, с. 68) кроме Мячково трилобит Phillipsia globiceps был найден в Давыдовой Пустыни. Выходящие на правом берегу р. Лопаси ниже монастыря породы, как мы сейчас знаем, относятся к верхней части каширского горизонта московского яруса.

Неплохую коллекцию каменноугольных трилобитов Подмосковья, состоявшую из нескольких десятков разрозненных частей панциря, собрали в конце XIX и в начале XX в. выдающийся знаток подмосковного
карбона А.П. Иванов. Она была им предварительно определена, но материал опубликовали только после его полной оценки, выполненной В.Н. Вебером (Иванов, Вебер, 1937). Из московского яруса Подмосковья ими были указаны следующие формы:
1) *Phillipsia* (?) sp., aff. *Phillipsia eichwaldi* (Fischer) Woodward. Подольский горизонт д. Образцово на р. Каширке и д. Мозгово по р. Деряба у г. Зубовка на Верхней Волге;
2) *Phillipsia eichwaldi* var. *mucronata* McCoy. Подольский горизонт у с. Бочарово на р. Волге;
3) *Griffithides cervilatus* Weber var.? Подольский горизонт: д. Образцово, Красный Стан на р. Москве; Пасынино (Кашира); р. Волга ниже Мопоково; д. Быкино на р. Оке; у д. Шурово ?, Васьково, Коробчево. Мячковский горизонт: д. Мячково и у станции Пески, каменоломня 2;
4) *Griffithides (?) praerpericus* Weber. Мячковский горизонт, д. Мячково;
5) *Griffithides (?)* sp. № 8 (aff. *Griffithides praerpericus* Web.). Мячковский горизонт, ст. Пески, каменоломня 2; касимовский ярус, р. Медведка у Воскресенска;
6) *Griffithides* (*Cyphitium*) sp. ind. № 11. Подольский горизонт, д. Пасынино.
Эта коллекция хранится в ЦНИГРМузее (г. Санкт-Петербург) и доступна для исследования, хотя не все экземпляры в ней сохранены.

В ходе многолетних палеоэколого-стратиграфических исследований среднего и верхнего карбона Подмосковья, выполнявшихся Е.А. Ивановой и И.В. Хворовой, к сборам А.П. Иванова были добавлены новые, но, по-видимому, редкие находки. При описании по- горизонтных сводных разрезов (Иванова, Хворова, 1955) трилобиты либо только упомянуты, либо даны их определения. Интересно, что список местонахождений совпадает с таковым у А.П. Иванова и В.Н. Вебера (1937) только частично. Для московского яруса ими приведены следующие сведения.

Улитинская свита — неопределенной трилобиты в бассейне р. Оки (Иванова, Хворова, 1955, c. 88).

Шуровская свита — *Griffithides aff. cervilatus* Web., окрестности Шурова (Иванова, Хворова, с. 91); неопределенной трилобиты — бассейн р. Онеги (Иванова, Хворова, 1955, c. 119).

Мячковский горизонт: Новлинская свита — неопределенной трилобиты, бассейн р. Пахры, Домодедово (Иванова, Хворова, 1955, c. 143).

В обобщающей монографии по среднему карбону Московской синеклизы (Махлина и др., 2001) из подольского горизонта (тонкий уровень неизвестен) изображен целый, но потерянный панцирь, найденный в Приокском карьере и определенный как *Pseudophilipsia* sp. indet. (табл. 47, фиг. 3). Кроме того, изображены пигидии и щелчок из мячковского горизонта карьера Домодедово (табл. 47, фиг. 4, 5), оставшиеся без определений (Алексеев, 2001).

Этим исчерпываются сведения о среднекаменноугольных трилобитах Подмосковья. Можно сказать, что их остатки чрезвычайно редки и фрагментарны, основную массу составляют пигидии небольших размеров, целые экземпляры, пригодные для точной идентификации, ранее не находились.

О неопине Asaphus eichwaldi

Выделенный Г.И. Фишером фейт Вальдгеймом вид *Asaphus eichwaldi* принадлежит к наиболее ранним таксонам трилобитов, получивших формальные названия. Этим объясняется повышенный интерес к истории установления и изучения (Вебер, 1937, с. 63—64).

Объем этого вида понимался чрезвычайно широко, с ним синонимизировались многие виды, описанные из нижнего карбона Западной Европы, что связано с утратой типового материала, отсутствием хороших изображений. Трилобиты под этим названием указывали в разрезах Подмосковья и северо-западного кряжа Московской синеклизы от черепецкого горизонта турнейского яруса до мячковского горизонта московского яруса. Для стабилизации ситуации X. Осмольска (Osmolska, 1970) предложила избрать в качестве неоптина пигидий, изображенный В.Н. Вебером (1937, табл. 7, фиг. 15; экз. 1557/5107 в ЦНИГРМузее) и происходящий с р. Воль (Юго-Западное Притымание) — как она думала, из нижнекаменноугольных отложений.
нний. Однако такое обозначение не соответствовало требованиям Международного кодекса зоологической номенклатуры, так как она принимала признаки этого вида в соответствии с концепцией Г. Вудварда, а не Г.И. Фишера фон Вальдгейма, и неотип происходил не из типовой области и не из того же стратиграфического интервала, что и типовая серия. В связи с этим Г. Хан (Hahn, 1991) обратился в Международную комиссию по зоологической номенклатуре принять решение о выделении этого неотипа, пользуясь чрезвычайными полномочиями. Решение о консервации неотипа было принято в 1993 г. (Opinion..., 1993). В связи с ревизией данный вид находится в составе рода Paladin Weller, 1936 (Osmolska, 1970).

Однако A. echwaldi был основан на экземплярах, происходящих из московского яруса, т.е. существенно более молодых, а неотип с р. Воль, по данным А. Кайзерлинга, происходит из "известняков со Spirifer mosquensis", т.е. из среднего карбона, о чем писал еще В.Н. Вебер (1937). Интересно, что неотип, как указано В.Н. Вебером (1937, с. 64, 155), происходит из коллекции Ф.Н. Чернышева (обр. 558), который определил этот "отпечаток" (!) как Philippia mesotuberulata McCoy, тогда как о присутствии этого вида на р. Воль писал еще Э.И. Эпштейн (Eichwald, 1861). Если учесть, что на рубеже серпуховского и байкальского век (т.е. раннего и среднего карбона) в ходе малого массового вымирания таксономический состав трилобитов существенно сменяется, выбор неотипа для вида, который сейчас считается раннекаменноугольным, нельзя признать удачным.

Рис. 1. Схема расположения местонахождения трилобитов в карьере Приокский. А — Московская область, Б — центральная часть Коломенского района, стрелкой показано положение карьера Приокский.

Характеристика местонахождения

В августе 2007 г. в Приокском карьере, расположенным у пос. Шурово (рис. 1) Московской области, Э.В. Мячко были обнаружены трилобиты различной степени сохранности, в том числе четыре более или менее целых панциря. Нахождки были сделаны в нижней части разреза, в маломощном (25—30 см) слое глинистых известняков и моргелей. Последовательность слоев, вскрытая в Приокском карьере, подробно охарактеризована М.Х. Махлиной и др. (2001а). Согласно этим авторам, указанный выше слой имеет номер три и образует основание верхней подсвиты (сторожского циклита) улитинской свиты. В нем обнаружены характерные для подольского и нижней части мячковского горизонта коробочки Idiognathodus podolskensis Goreva и Neognathodus inaequalis Kozitskaya (зона Neognathodus inaequalis). Вместе с трилобитами встречены одиночные кораллы Bothrophylum sp., мшанки Fenestella sp., брахиоподы Neochonetes carboniferus (Keys.), Choristites sowerbyi Fischer, Entelates lamarcki Fischer, Kozlovska aff. pulchra (Rotai), Brachytyrrina jakovlevi Ivan., иглокожие Archaeocidarids mosquensis Ivan., брюхоногие моллюски (Strobeus sp., Paleostylus sp., Eumaphalus marginatus Eichw.) и остатки раков (Petrosodus sp.).

Этот разрез изучался также П.В. Кабановым (Кабанов, 2003; Кабанов, Baranova, 2007), предложившим более детальную схему расчленения подольского горизонта, в которой слой с трилобитами (под № 7 у П.Б. Кабанова) попадает в горсовую свиту (рис. 2).

Слой, содержащий остатки трилобитов, формировался в момент наибольшего углубления морского бассейна во время гляциоэвстатического трансгрессивно-регрессивного цикла, и образование захоронения могло интерпретироваться как результат кратковременного сильного штормового события, приведшего к быстрой консервации их панцирей.

Необходимо отметить, что указавшиеся ранее (см. выше) находки Griffithides aff. cervilatus Weber в районе Шурово происходят из более высоких слоев, относящихся к шуровской свите подольского горизонта.

Находки трилобитов в окрестностях Шурово (ныне район г. Коломны) не первые, известные в литературе. Так, И.А. Ивановой и Хворовой (1955) из Шуровского карьера (ныне не существующего и располагавшегося значительное ближе к Шурово, чем Приокский) были определены трилобиты как Griffithides aff. cervilatus Web. и Philippsia aff. eichwaldii Fischer. К сожалению, у нас не было возможности ознакомиться с этими экземплярами, поэтому мы не можем говорить с полной уверенностью о точности определений этих находок.

Палеонтологические описания

За последние несколько десятилетий система трилобитов карбона и перми была существенно пересмотрена, родовые принадлежность многих видов изме-
нена (Hahn, Hahn, 1969, 1970, 1972, 2008; Owens, 2003). Особое значение для нас имеет недавно опубликованная и прекрасно иллюстрированная монография Йозефа Гандл (Gandl, 2011), в которой описаны 40 видов и подвидов из 21 рода трилобитов, происходящих из верхнего вестфала (московский ярус) Кантабрийских гор на севере Испании. Хотя целые панцири там тоже единичны, в каждом местонахождении собраны значительные коллекции не только пигидий, но и фрагментов крыльев, что позволило Гандлу дать их реконструкции.

Среди собранного в Приокском карьере материала резко доминируют более или менее цельные (хотя и деформированные) панцири и пигидии, определенные как Dittomopyge cf. campocascensis Gandl, 2011. Вид Dittomopyge (Dittomopyge) campocascensis (рис. 3) описан из района Кампо-де-Касо (провинция Овьедо), где его остатки найдены в верхней части формации Беленьо (Beleño Formation, известники Эскалада), которая по возрасту считается эквивалентной кашмирскому горизонту московского яруса. Таким образом, по возрасту испанское и подмосковное местонахождение весьма близки друг другу. Необходимо отметить, что, несмотря на значительную удаленность, в среднем и верхнем карбоне Кантабрийских гор заметную долю среди фузулин и брахиопод составляют формы, известные на Восточно-Европейской платформе. Поэтому нельзя исключить и наличие общих форм среди трилобитов.

Ниже приводится описание найденных трилобитов. Коллекция хранится на кафедре палеонтологии геологического факультета МГУ имени М.В. Ломоносова, № 247.

Отряд Proetida Fortey et Owens, 1975
Надсемейство Proetacea Hawle et Corda, 1844
Семейство Phillipsidae Oehlert, 1886
Подсемейство Ditomopyginae Hupé, 1953
Род Dittomopyge Newell, 1931
Dittomopyge cf. campocascensis Gandl, 2011

Рис. 4, фиг. 1—10

Описание. Панцирь небольших размеров, 2,0—2,5 см в длину, продольговатый, сильно вытянут в длину, расширяется к передней части. Головной щит широкий, полукруглой формы, заканчивается длинными щечными шипами, иногда доходящими до 4—6 сегмента туловища. Глаза крупнейших форм, расширяются в передней части и нависают над краевой каймой. Зад- ний край глаза прямой и достаточно узкий (меньшие ширины глаза в передней части почти в два раза). Глаза слабовыпуклые, на одном экземпляре (рис. 4, фиг. 3) наблюдаются возможные следы борозд (7). У основания глаза отчетливо широкими бороздами обособлены предзатылочная лопасть и пара более крупных краевых нижних базальных лопастей. Затылочное кольцо широкое (равно по ширине глаза в передней части), отделено не менее широкой затылочной бороздой и без срединной туберкулы. Глаза большие, бобовидной формы, занимают большую часть подвижной шеки, с основанием у базальных лопастей и доходят до середины глаза. Краевая кайма широкая, несет многочисленные террасовые линии. Скульптура

Рис. 2. Разрез верхнемосковских отложений (подольский и нижняя часть мечковского горизонта) в карьере Приокский и положение слоя с остатками трилобитов по П. Б. Кабанову с изменениями:
1 — известняк чистый; 2 — известняк слабоглинистый; 3 — известняк глинистый; 4 — морские глины и мергели; 5 — глинистые горизонты палеопоч; 6 — линзы доломитов; 7—9 — напластование: 7 — плитчатое, 8 — неравномерно-плитчатое, 9 — линзовидное и желатиноватое; 10 — кремни; 11 — известняковые гальки; 12 — макроскопические полигоны и каналы раствораения; 13 — крупнозернистые пелитоидно-придонно-фораминафиформные грейнстоуны; 14 — осьма; 15 — уровень с остатками трилобитов
на поверхности щефалона почти не сохранилась, но в задней части щефалона можно видеть неравномерно рассеянные мелкие бугорки (рис. 4, фиг. 1).

Тулowiще состоит из 10 сегментов. Спинные борозды четкие, постепенно сужаются назад. Осевая часть слабовыпуклая, сужается к задней части. Плееры расположены параллельно друг другу, имеют небольшой (~5°) наклон назад и заметно изогнуты на своих концах. Плевральные борозды глубокие. Скульптура на поверхности торакса не сохранилась.

Хвостовой щит уплощенный, овальной формы, заметно длиннее головного щита. Рахис выпуклый, слабо сужается к заднему концу пигидия. Состоит из 15—16 сегментов, разделенных глубокими и широкими бороздами. Рахис нависает над краевой каймой. Кольца рахиса сложенные, на некоторых экземплярах по их краям можно наблюдать две небольшие выпуклости, похожие на бугорки, но сохранялась и не позволяет считать их присутствие доказанным. Плевер на боковых лопастях пигидия 9—11 пар, они разделены глубокими межплевральными бороздами и наклонены к заднему концу пигидия с постоянным увеличением угла по отношению к рахису (в задней части пигидия они практически параллельны рахису). Краевая кайма очень широкая (по ширине равна примерно половине ширины рахиса в передней его части); несет многочисленные тонкие террасовые линии.

Размеры в мм.

<table>
<thead>
<tr>
<th>№ экземпляра</th>
<th>ЛПАН</th>
<th>ДЦ</th>
<th>ШЦ</th>
<th>ДГ</th>
<th>ШПГ</th>
<th>ДП</th>
<th>ШП</th>
<th>ДР</th>
</tr>
</thead>
<tbody>
<tr>
<td>19/247</td>
<td>28,0</td>
<td>15,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20/247</td>
<td>23,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21/1247</td>
<td>18,0</td>
<td>10,0</td>
<td>9,0</td>
<td>4,5</td>
<td>3,1</td>
<td>6,2</td>
<td>8,0</td>
<td>5,0</td>
</tr>
<tr>
<td>25/247</td>
<td>25,0</td>
<td>15,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/247</td>
<td>15,0</td>
<td>16,0</td>
<td>9,0</td>
<td>7,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/1/247</td>
<td>11,0</td>
<td>9,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15/247</td>
<td>16,0</td>
<td>15,0</td>
<td>6,7</td>
<td>6,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23/247</td>
<td>7,5</td>
<td>6,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/247</td>
<td>6,5</td>
<td>8,8</td>
<td>6,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/247</td>
<td>6,0</td>
<td>8,0</td>
<td>5,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Рис. 4. Фиг. 1—10 — Ditomopyge cf. campocasensis Gandl, 2011 из упаковочной свиты подольского горизонта, карьер Приокский, Московская обл.: 1 — экз. 21/247, целый пигидий, ×6; 2 — экз. 23/247, отпечаток края пигидия, ×10; 3 — экз. 6/247, края пигидия, ×4; 4 — экз. 26/247, пигидий, ×4; 5 — экз. 12/247, пигидий, ×4; 6 — экз. 21/247, пигидий, ×4; 7 — экз. 3/247, пигидий, ×7,5; 8 — экз. 15/247, отпечаток щефалона и передней части торакса, ×4; 9 — экз. 5/247, пигидий, ×10; 10 — экз. 25/247, отпечаток пигидия без левой части щефалона, ×3. Фиг. 11 — Pseudo-Phillipsia sp., местонахождение и возраст те же; экз. 27/247, пигидий, ×5.

Замечания. Несмотря на очень близкое сходство с видом *D. campocasensis* Gandl., 2011, небольшие отличия (отсутствие сильно развитых борозд гладели), которые могут быть связаны с постепенной сохранностью наших экземпляров, заставляют нас оставить определение этих трилобитов в открытом номенклатуре.

Материал. 30 экземпляров различной сохранности, из них 4 целых панциря, 2 щелона, 2 краинаны и 22 пигидия из одного местонахождения.

Род *Pseudophilippisa* Gemmellaro, 1892

Pseudophilippisa sp.

Рис. 4, фиг. 11

Описание. Пигидий округло-треугольной формы, немного вытянутый в длину. Рахис трапециевидного сечения, состоит из 18 (? кольца, оканчивается тупо, доходит до краевой каймы и немного нависает над ней. Спинные борозды на пигидии видны явственно. На боковых лопастях находится 12 пар плевр. В передней части пигидия плевры расположены практически параллельно кольцам рахиса, но затем угол их расположения относительно продольной оси рахиса уменьшается и становится более крутым (43—45°). Плевры плавно переходят в краевую кайму и не отделены от нее бороздой. Межплевральные борозды глубокие, плевральные практически неразличимы. Краевая кайма широкая (0,8 мм), плоская и гладкая. Скульптура не сохранилась.

Размеры. Длина — 6,9 мм; ширина — 6,5 мм; ширина рахиса в передней части — 2,25 мм; длина рахиса — 6,2 мм; ширина краевой каймы — 0,75 мм.

Сравнение. По строению схож с верхнемеловыми (?) точечными стратиграфическим положением не указано) пигидиями *Pseudophilippisa praepermica* (Weber, 1933) из Ферганны и Тимана, вида, также упоминающегося из московского яруса Мячково (Подмосковье), но отличается более углом рахисом в задней части, отсутствием борозды между краевой каймой и плеврами, а также отсутствием туберкул на панцире.

Замечания. Данная форма не имеет значительного сходства с каменноугольными трилобитами Подмосковья и Донбасса и скорее всего принадлежит новому виду. К сожалению, нет не имеется ни одного из экземпляров этого трилобита ни отдельных головных щитов, несомненно относящихся к этой форме, поэтому определение дано в открытой номенклатуре.

Материал. Один пигидий посредственной сохранности.
Авторы выражают благодарность Е.А. Лаврентьевой за помощь в полевых работах и безвозмездное предоставление нескольких экземпляров трилобитов, П.Б. Кабанову за предоставление колонки Пирийского карьера.

С.С. Лазареву за определение брахиопод-продуктид и А.В. Мазину (ПИН РАН) за фотографии трилобитов.

Работа выполнена при поддержке РФФИ, проект 12-05-00106.

Литература

TRILOBITES FROM PODOLSKIAN SUBSTAGE OF MOSCOVIAN IN PRIOKSKY QUARRY
(MOSCOW REGION)

E.V. Mychko, A.S. Alekseev

The firstly discovered in upper Moscovian (Ultitino Formation of the Podolskian) of the Moscow Basin complete skeletons of trilobites are identified as *Ditomopyge cf. campocasensis* Gandl, 2011 recently described from the upper Moscovian strata of the Cantabrian Mountains in the Spain. Single pygidium of *Pseudophilippia* sp. was found in the same locality and layer of the Prioksky Quarry.

Key words: trilobites, Middle Carboniferous, Moscovian, Podolskian Substage, Moscow Basin.

Сведения об авторах: Алексеев Александр Сергеевич — докт. геол.-минерал. наук, проф. каф. палеонтологии геологического ф-та МГУ, e-mail: aaleks@geol.msu.ru; Мышко Эдуард Васильевич — аспирант каф. палеонтологии геологического факультета МГУ, тел.: 8 (495) 939-49-24.